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ABSTRACT:
When a bilingual switches languages, do they switch their voice? Using a conversational corpus of speech from

early Cantonese-English bilinguals (n¼ 34), this paper examines the talker-specific acoustic signatures of bilingual

voices. Following the psychoacoustic model of voice, 24 filter and source-based acoustic measurements are esti-

mated. The analysis summarizes mean differences for these dimensions and identifies the underlying structure of

each talker’s voice across languages with principal component analyses. Canonical redundancy analyses demonstrate

that while talkers vary in the degree to which they have the same voice across languages, all talkers show strong sim-

ilarity with themselves, suggesting an individual’s voice remains relatively constant across languages. Voice vari-

ability is sensitive to sample size, and we establish the required sample to settle on a consistent impression of one’s

voice. These results have implications for human and machine voice recognition for bilinguals and monolinguals

and speak to the substance of voice prototypes. VC 2023 Acoustical Society of America.
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I. INTRODUCTION

An individual’s voice is a rich signal, carrying informa-

tion about an array of biological, physiological, and psycho-

logical states while presenting linguistic and social meaning

(Podesva and Callier, 2015). While many of these states are

transient—for example, one’s emotional state can vary across

a conversation—an individual’s vocal identity remains intact.

Voices have been likened to auditory faces—they are

uniquely individual yet share basic characteristics with the

broader population (Belin et al., 2004; Lee et al., 2019).

Where faces share an overall shape and composition of fea-

tures (e.g., eyes, nose, etc.), voices share the acoustic conse-

quences of similar vocal anatomy. At the same time, upon

seeing a familiar face or hearing a familiar voice, one can

often immediately identify the individual and ascertain their

present state. In this way, both voices and faces signal iden-

tity along with aspects of the individual’s physical and emo-

tional state. Voices also simultaneously convey a

communicative message. A perceiver is, thus, presented with

a signal interwoven with talker-indexical, affective, social,

and linguistic information. Bilinguals offer a unique angle on

voice identity. While a bilingual’s physiology does not

change as they switch between their languages, their social

personae may change, and the phonetic and phonological fea-

tures of their languages may shift or alter the acoustic charac-

teristics that present their identity. The goal of the current

work is to provide a rigorous acoustic account of how the

voice varies within and across a bilingual’s two languages.

While the source-filter theory of speech production

delineates the attributes that voices share (Fant, 1970),

voices also vary in unique ways (Lee et al., 2019; Lee and

Kreiman, 2022). While variation is indeed wide-ranging, it

remains far from random (e.g., Chodroff and Wilson, 2017;

Johnson, 2021a; Lee et al., 2019; Lee and Kreiman, 2022).

Early work on voice variation focused on how articulatory

settings correspond to voice quality (Laver, 1980; Pittam,

1987), while more recent accounts advocate for a psycho-

acoustically informed model of voice variation (Kreiman

et al., 2014). The rationale for this shift is motivated by the

lack of a one-to-one mapping from articulation to perception

via acoustics.

Voice, as a term, can refer to different aspects of

speech, ranging from vocal fold behavior up to the holistic

percept of an individual’s voice. The latter may be more in

line with a layperson’s interpretation, which may be relevant

for voice perception research. In its narrowest sense, voice

has been defined as the behavior of the vocal folds—the

glottal source—although Garellek (2019) notes that the

acoustic and perceptual consequences of the glottal source

cannot be entirely separated from supralaryngeal factors

(i.e., the filter). Thus, contemporary models of voice quality

account for voice more broadly, also capturing filter behav-

ior via the resonant frequencies of the vocal tract.

As noted, the voice indexes many elements—stance,

psychological states, physical characteristics, and identity

(Podesva and Callier, 2015). Identity here includes the idea

of “linguistic identity,” which stems from scholarship sum-

marizing how phonetic settings can vary across languages

and dialects (see Mennen et al., 2010; Pittam, 1987;

Podesva and Callier, 2015). While acoustic and articulatory

dimensions vary for linguistic reasons, the same set of

dimensions can also vary for non-linguistic reasons.

Speech acoustics, thus, index a multitude of talker traits anda)Electronic mail: molly.babel@ubc.ca
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attributes simultaneously. This observation is especially rel-

evant in light of Kreiman and colleagues’ argument that the

perceptually validated set of dimensions in the psychoacous-

tic model of voice are more than the sum of their parts

(Kreiman et al., 2014; Kreiman et al., 2021). Voice quality

and what it indexes, thus, form a many-to-many relation-

ship, where measures covary and conspire together to form

a multidimensional percept of an individual’s voice.

A. Structure in voice quality variation

In summarizing the state of art on voice variation, we

begin with contemporary scholarship that focuses on voices

generally before turning to the bilingual-focused research,

which historically examines fewer acoustic dimensions. Lee

and colleagues (Lee et al., 2019; Lee and Kreiman, 2020,

2022) use principal component analyses (PCA) on 26 acous-

tic dimensions to characterize the structure of voice

(co)variation. Examining acoustic voice variation in differ-

ent languages [American English (Lee and Kreiman, 2019,

2022) and Seoul Korean (Lee and Kreiman, 2020)] and

speech styles (read and conversational speech), Lee and col-

leagues leverage the psychoacoustic model of voice quality

(Kreiman et al., 2014) and adapt methods from the domains

of face variability and perception (Burton et al., 2016).

To outline the structure of voice variability, Lee et al.
(2019) used a series of PCAs to investigate how acoustic

measurements pattern with one another. PCA is a dimension-

ality reduction technique—that is, it distills a large set of var-

iables into components that reflect covarying bundles of

variables. Lee et al. (2019) examined the structure of vari-

ability on a within-talker basis as well as across the larger

speech community represented within the University of

California, Los Angeles Speaker Variability Database

(Keating et al., 2019). This database includes English record-

ings and force-aligned transcripts of 201 talkers completing

12 different tasks ranging from scripted to unscripted.

Talkers were all UCLA students, varying in their language

background [i.e., whether or not English is their first lan-

guage (L1)] and sex (here, male or female). Crucially for the

comparison with their later work on spontaneous speech (Lee

and Kreiman, 2022), Lee et al. (2019) focused on sentence

reading. Using a large set of talkers (n ¼ 201) producing read

sentences in English, Lee et al. (2019) demonstrated that voi-

ces share a basic structure. Shared structure is characterized

by the same set of variables covarying and together account-

ing for comparable amounts of the overall variation in the

PCAs. The most commonly shared component in Lee et al.
(2019) consisted of spectral shape variables in the higher fre-

quencies and spectral noise variables; these components

accounted for approximately 20% of the overall variance.

These variables are associated with vocal breathiness or

brightness, although we add that while Kreiman et al. (2021)

have perceptually validated the psychoacoustic model of

voice quality, the exact correspondence between any of these

psychoacoustic features and their percepts is not well under-

stood. The next most commonly shared component

comprised higher formant variables and accounted for

approximately 10% of the overall variance. These variables

are typically associated with vocal tract size and speaker

identity. Despite the presence of this shared structure, how-

ever, Lee et al. (2019) argue that the rest of voice structure

variation is largely idiosyncratic, although, given that PCA

by definition eliminates some amount of idiosyncratic varia-

tion, this might be overestimating the presence of idiosyn-

cratic vocal traits.

Lee and Kreiman (2022) replicated their work with

short samples of spontaneous speech from the same data-

base using a smaller, but still large subset of voices (n¼ 99).

The results were similar, with the exception that fundamen-

tal frequency (F0) emerged as a shared relevant dimension.

This result arguably reflects differences between read and

spontaneous spoken English, with spontaneous speech

exhibiting more affective qualities. In spontaneous speech,

F0 varies along with the higher source spectral shape and

noise parameters. Lee and Kreiman (2020) also replicated

the basic tenets of Lee et al. (2019) again with sentence

reading in Seoul Korean, finding some small differences

that are readily explained by typological differences

between Korean and English. Unlike in English, F0 and var-

iability in the lower formants emerged as relevant dimen-

sions in read Korean speech. The authors argue that this

reflects phrasal intonation patterns that occur in Korean read

speech.

B. Bilingual voice variation

Describing and analyzing acoustic voice variation in

bilingual speech has motivation from both perception and

production. Listeners are better at identification and discrimi-

nation when they have more familiarity with the language at

hand, but performance in identification tasks tends to be

above chance even for listeners who lack familiarity with the

language (e.g., Orena et al., 2019). Listener experience mat-

ters substantially less for discrimination (e.g., Perrachione

et al., 2019). In cases where listeners cannot rely on linguistic

information to parse talker identity, they track non-linguistic

acoustic-auditory information in the voice (Perrachione et al.,
2019). Understanding the structure of that variability brings

us one step closer to understanding how listeners weight and

prioritize information in the speech signal, as it delimits the

hypothesis space. A focus on bilingual voices crucially

allows for the decomposition of what is language-specific

and what is individual-specific as the speaker and their vocal

tract physiology remain intact across a bilingual’s different

languages.

Moreover, bilingual speech presents an ideal test case

for the argument that voices function like auditory faces. If

the structure of variability from each of a bilingual’s lan-

guages is well-matched—comparatively speaking—then

voices can be straightforwardly thought of as auditory faces.

While “well-matched” is a vague term, its use reiterates that

the meaningful threshold for comparison is not some abso-

lute value but rather how structure is shared within and
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across languages for between-talker comparisons. Related to

this is the fact that there are language-specific patterns in

facial postures and dynamic deformation in speech. A small

body of work illustrates that language identification is possi-

ble using only lip movements by both humans (Soto-Faraco

et al., 2007) and machines (Afouras et al., 2020), indicating

that there are indeed language-specific patterns in facial pos-

tures for face perception. Despite language-specific patterns

in face movement during speech, it is still easy to identify a

person from their face, regardless of the language being

spoken.

Additionally, examining the structure of the same talk-

er’s voice in each language lends additional validation to the

arguments made by Lee and Kreiman (2020) for the differ-

ences between English and Seoul Korean sentence reading.

In comparing across their studies, Lee and colleagues argue

that both linguistic and biological factors contribute to the

structure of voice variation. Bilingual speech, again,

presents an ideal test ground for disentangling biological

and linguistic factors from one another. While common in

the literature, the language versus biology dichotomy is

somewhat misleading. Voices ultimately have biological

constraints due to physical and physiological limitations

(e.g., vocal tract length, vocal fold mass) or pathologies.

Yet, at the same time, individuals exert remarkable and

wide-ranging control over their voice space and are highly

capable of manipulating factors that are not linguistically

important but signal social and contextual information. This

applies across all aspects of an individual’s linguistic reper-

toire (Bullock and Toribio, 2009; Wei, 2018). Thus, in the

case of bilinguals, the only aspect that is held constant

across languages is the biological part (i.e., anatomy and

physiology). The same “hardware” can be used for drasti-

cally different ends. Given the multiple functions of the

voice, voice variation across languages may indicate

language-specific expression of talkers’ social and cultural

identities and not just language-specific settings for articula-

tion (Loveday, 1981; Voigt et al., 2016).

Cantonese-English bilinguals’ spontaneous speech is

the empirical focus of this work. We anticipate differences

in voice variation across Cantonese and English due to pho-

netic and phonological differences between these languages.

While all languages have consonants and vowels, they differ

in distribution, articulation, and acoustics (e.g., Munson

et al., 2010). Cantonese and English differ in their conso-

nant and vowel inventories, in addition to their supraseg-

mental and prosodic properties (Matthews et al., 2013). A

core difference between these languages is that Cantonese is

a tone language and English is not. Cantonese has six lexical

tones, which are often referred to by numbers 1–6: (1) high

level, (2) high rising, (3) mid level, (4) low falling, (5) low

rising, and (6) low level. Both segmental and suprasegmen-

tal differences in languages have implications for voice

quality.

In a small study of Cantonese-English bilingual (n ¼ 9),

Russian-English bilingual (n ¼ 9), and English monolingual

(n ¼ 10) young women, Altenberg and Ferrand (2006)

examined F0 patterns in conversational speech across the

different languages and populations. As some languages

reportedly have a different mean F0 (e.g., Keating and Kuo,

2012), Altenberg and Ferrand (2006) addressed both

whether different languages have different F0 baselines and

whether F0 shifts when an individual changes languages.

They found that Russian-English bilinguals exhibited differ-

ences in mean F0 across their two languages, and

Cantonese-English bilinguals did not. Speakers did, how-

ever, produce a wider F0 range in Cantonese compared to

their English. In a larger study of Cantonese-English bilin-

guals reading passages (n ¼ 40), Ng et al. (2012) examined

a variety of different voice measures with male and female

talkers. Female talkers exhibited lower F0 in Cantonese than

English, but males did not. In the same study, all partici-

pants had greater mean spectral energy values (mean ampli-

tude of energy between 0 and 8 kHz) and lower spectral tilt

(ratio of energy between 0 and 1 kHz and between 1 and

5 kHz) in Cantonese (Ng et al., 2012). Respectively, these

findings suggest a greater degree of laryngeal tension and

breathier voice quality in Cantonese compared to English.

The long-term average spectrum (LTAS) measure of the

first spectral peak did not differ across languages, suggesting

that vocal fold stiffness remained consistent in the bilin-

guals’ two languages.

Ng et al. (2010) examined F0 in spontaneous speech

from 86 Cantonese-English bilingual children and found it

to be lower in Cantonese compared to English. This corrob-

orates Ng et al. (2012) and diverges from the nonsignificant

difference in Altenberg and Ferrand (2006). The mixed

results could ultimately be attributed to differences in sam-

ple sizes, the quantity of speech analyzed, or the language

backgrounds of the bilinguals studied. While the picture

regarding voice quality measures appears clearer and more

consistent, those conclusions arise from a single study. In

any case, these three studies offer reason to expect that

Cantonese and English might differ in measures associated

with pitch and phonation type. Our focus on Cantonese-

English bilinguals provides a small body of literature from

which we can anticipate patterns.

We broaden our coverage of voice variation in bilin-

guals to other language comparisons to understand the ways

in which bilingual voices have been shown to vary (or not).

Lee and Sidtis (2017) compare F0, speech rate, and intensity

in a small group of Mandarin-English bilinguals (n ¼ 11)

and Korean-English bilinguals (n ¼ 11) across three differ-

ent tasks. They report a higher mean F0 for Mandarin read-

ing and all Korean styles (reading, picture description, and

monologue) compared to English. Additionally, there were

no differences in F0 variability across languages or tasks for

the Mandarin-English bilinguals, but an increase in F0 vari-

ability in Korean monologue compared to English mono-

logue. Last, while there were no interesting differences in

intensity, the bilinguals spoke faster in Mandarin and

Korean. This quantification was based on syllables per sec-

ond, and, given increased syllable complexity in English

compared to Mandarin and Korean, this increased syllables/
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s rate in the non-English languages could be a reflection of

there being fewer phones in a single syllable. Lee and Sidtis

(2017) speculate that Mandarin’s status as a tone language

may account for the higher mean F0 in reading, as it echoes

some prior work with separate populations of English and

Mandarin speakers, in which Mandarin tends to have higher

and more variable F0 (Keating and Kuo, 2012). This finding,

however, may be strongly associated with the type of bilin-

guals studied, and, to our knowledge, there is no principled

reason that a language’s having lexical tone would lead to a

higher or lower F0 mean. Xue et al. (2002) found that

Mandarin-English bilinguals produced lower F0 in

Mandarin than English. This group differed from the par-

ticipants in Lee and Sidtis (2017), as they are described as

non-native English speakers. Producing higher F0 in a non-

native language may reflect non-linguistic factors like stress

or confidence (J€arvinen et al., 2013; Lee and Sidtis, 2017),

although Yang et al. (2020) found no differences in F0 pro-

files across the languages of 12 Cantonese-dominant

Cantonese-Mandarin bilinguals. Cheng (2020) finds that

Korean has consistently higher F0 than English, regardless

of whether speakers were early sequential or simultaneous

bilinguals, and that differences in F0 range differ for cisgen-

der males and females. Ryabov et al. (2016) looked at rate,

duration, and F0 for Russian-English bilinguals and found

no F0 differences but found that Russian had a faster speech

rate. This result contradicts the findings for the bilinguals

studied in Altenberg and Ferrand (2006), where Russian

exhibited consistently higher F0 than English. While higher

F0 and slower speech rates can be characteristics of speech

by non-native or non-dominant speakers (J€arvinen et al.,
2013), such an explanation cannot account for conflicting

results.

Another example of less than clear-cut results comes

from Ordin and Mennen (2017)—they demonstrate differ-

ences in F0 range and level across languages for female

Welsh-English bilinguals in a reading task, for whom Welsh

had a higher and wider F0 range. This result did not hold for

males from the same population, who varied more in their F0

level and range. The authors argue that, in this case, the

crosslinguistic difference is likely to be sociocultural, as dif-

ferent patterns were observed for male and female speakers

on a within-speaker basis. Ordin and Mennen (2017) argue

that if a difference in F0 stemmed purely from language dif-

ferences, then males and females would both show the pat-

tern. Because this is not the case, they argue that the result is

unlikely to be due to anatomical or purely linguistic reasons.

While this argument does not necessarily disentangle the

social from the linguistic, it emphasizes that F0 can index

social in addition to linguistic dimensions. While studying

bilingual talkers provides a clear path to disambiguating the

role of anatomical differences in voices, it does not necessar-

ily facilitate disentangling linguistic and sociocultural factors

from one another. One can question whether linguistic and

sociocultural factors are disentangleable in the first place.

Between-talker variability should perhaps be given

more of a spotlight in this research domain. In work with

speech rate, Bradlow et al. (2017) found talker and language

differences. That is, some talkers are fast and others are

slow, and some languages are faster while others are slower.

Crucially, speech rate appeared to be a talker trait that stuck

with the individual: If someone was a fast talker in their

dominant language, they were also a fast talker in their non-

dominant language, and likewise for slow talkers. The work

of Bradlow et al. (2017) highlights the utility of comparing

within individuals and across languages.

C. The present study

This paper integrates the crosslinguistic voice differ-

ences with the structure of acoustic voice variation to pro-

vide a more comprehensive picture of how voices vary

across languages. With a corpus of Cantonese-English bilin-

gual spontaneous speech (Johnson, 2021b), we describe the

behavior of various spectral properties (e.g., Ng et al., 2012)

and also examine how acoustic variation is structured, fol-

lowing closely on the work of Lee et al. (2019) and Lee and

Kreiman (2022). We build upon the methods of Lee and col-

leagues by extending the methods to bilingual speakers’

speech in two languages, using longer samples, and assess-

ing how large of a sample is necessary to characterize voice

variation within and across talkers and languages. We also

introduce a method to quantify structural similarity within

and between individuals and languages.

II. THE DATA

A. The SpiCE corpus

The data used in this analysis come from the conversa-

tional interviews in the SpiCE corpus (Johnson, 2021b). The

analysis uses the Cantonese and English interviews from the

34 early Cantonese-English bilinguals (17 self-identified

female, 17 self-identified male) in the corpus. Participants

ranged from 19 to 34 years of age. Interviews were con-

ducted in English and Cantonese with a 24 year old

Cantonese-English bilingual female. Interviews in each lan-

guage were approximately 25 min and were in a casual inter-

view format designed to elicit continuous speech from the

interviewee. The language order was counterbalanced, and

each interview was preceded by a sentence reading task and

a short story narration in the target language for that part of

the session.

The audio from these interviews is high-quality, with a

44.1 kHz sampling rate, 16-bit resolution, and minimal

background noise. The analyses reported here used the chan-

nel that recorded the participants’ speech. Code-switches are

included in the analysis, as code-switches are representative

of the particular talker’s language behavior in a given lan-

guage. Additionally, code-switching does not necessarily

imply a categorical shift in language modes, and switches

may be pronounced with matrix language phonology—that

is, the base language of the sentence (e.g., Fricke et al.,
2016; Myers-Scotton, 2011).

All voiced segments were identified with the Point
Process (periodic, cc) and To TextGrid (vuv) Praat
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algorithms (Boersma and Weenink, 2021), implemented

with the Parselmouth PYTHON package (Jadoul et al., 2018).

The pitch range settings used with Point Process (periodic,
cc) were 100–500 Hz for female talkers and 75–300 Hz for

male talkers. These settings reflect a balance between

known differences between male and female pitch

(Simpson, 2009) and the wide range of F0 variability in

spontaneous speech while guarding against the pitch estima-

tion issues of doubling and halving. This method of identify-

ing voiced portions of the speech signal captures vowels,

approximants, and some voiced obstruents. Because /n/ and

/l/ vary in their mid-frequency spectral properties (Garellek

et al., 2016) and Cantonese and English likely do not have

comparable counts of these sounds (Cheng et al., 2022; Soo

et al., 2021), force-aligned (McAuliffe et al., 2017) intervals

with /n/ and /l/ labels were removed after processing in

VoiceSauce (Shue et al., 2011).

B. Acoustic measurements

All voiced segments, with the exception of intervals

identified in a forced aligned transcription as containing

/n/ or /l/, were subjected to the same set of acoustic mea-

surements of voice quality made by Lee et al. (2019),

except formant dispersion, which was excluded given its

very strong correlation with the measured value of F4 [fol-

lowing the exclusionary criteria in Sec. II C: Pearson’s r
¼ 0.94, degrees of freedom (df)¼ 2 917 150, p< 0.001].

The choice of measurements in Lee et al. (2019) is based

on Kreiman et al. (2014) psychoacoustic voice quality

model, as well as the availability of algorithms in the soft-

ware used to extract measurements. Measurements were

output every 5 ms from voiced segments in VoiceSauce

(Shue et al., 2011).

The measurements made in this analysis are described

below. Each measurement is bolded and followed by a short

description. F0 is associated with linguistic (e.g., lexical

tone), prosodic, and talker characteristics and was measured

in Hz using the STRAIGHT algorithm (Kawahara et al.,
2016). F1, F2, and F3 contribute to linguistic contrasts—

particularly for vowels and sonorant consonants—and were

estimated using the Snack Sound Toolkit method

(Sj€olander, 2004), with the default settings of 0.96 pre-

emphasis, 25 ms window length, and 1 ms frameshift. F4,

measured in Hz and estimated along with F1–F3, is associ-

ated with talker characteristics, such as vocal tract length.

H1*–H2*, measured in dB, is the corrected (Iseli et al.,
2007) amplitude difference between the first two harmonics,

characterizes source spectral shape, and is typically associ-

ated with phonation type, but can also be confounded by

nasality (Chai and Garellek, 2022; Munson and Babel,

2019; Simpson, 2012). H2*–H4* is the corrected amplitude

difference between the second and fourth harmonics and is

the second of four measures capturing spectral shape—it is

associated with phonation type and is measured in dB. If P0

aligns with H2, this measure, like H1*–H2*, may also be

confounded with nasality (Chai and Garellek, 2022;

Simpson, 2012). H4*–H2kHz*, measured in dB, is the cor-

rected amplitude difference between the fourth harmonic and

the harmonic closest to 2000 Hz, is a third spectral shape

measure and captures shape in a higher frequency range.

H2kHz*–H5kHz is also measured in dB, and is the ampli-

tude difference between the harmonics closest to 2000 Hz

(corrected) and 5000 Hz (uncorrected). CPP is cepstral peak

prominence and is measured in dB. CPP corresponds to the

degree of harmonic regularity in voicing and is associated

with non-modal phonation types. VoiceSauce computes CPP

according to the algorithm in Hillenbrand et al. (1994), mea-

suring the difference between the amplitude of the peak in a

cepstrum and the value at the same quefrency on the regres-

sion line for that cepstrum.1 Energy—root mean square

(RMS) energy—is a measure of spectral noise in dB that

reflects overall amplitude and is calculated over a window

comprising five pitch periods. Energy is a perceptual correlate

of volume or loudness. SHR is a (unitless) subharmonics-

harmonics amplitude ratio; it is a measure of spectral noise

associated with period-doubling or irregularities in phonation.

VoiceSauce’s implementation is based on the algorithm

described in Sun (2002). All analyses and code for this pro-

ject are available on the Open Science Framework (OSF) at

https://osf.io/ybdkw/.

C. Exclusionary criteria and post-processing

To eliminate impossible values, which are assumed to

result from measurement error, observations were excluded

in cases where any of the following measurements had a

value of zero: F0, F1, F2, F3, F4, CPP, or H5kHz.

Observations were also excluded if Energy was more than

three standard deviations (s.d.s) above the grand mean. This

may exclude some valid measurements but removes the

long right tail of likely erroneous measures, as humans can

only produce speech so loud.

Filtering based on F0 and the four formant frequencies

reflects the observation that zero measurements are not pos-

sible for voiced portions of the speech signal. The interpre-

tation for zero in CPP would indicate there is no cepstral

peak, that is, no regularity in the voicing. As nonzero val-

ues for CPP reflect a range of modal and non-modal phona-

tion, a zero for CPP likely reflects either a lack of voicing

or an erroneous F0 measurement. Last, only the spectral

measure for H5kHz was used in filtering (uncorrected, and

not the difference used in the analysis), as erroneous values

tended to co-occur on the same observation. The distribu-

tion of H5kHz did not span zero, except for a spike of erro-

neous values equal to zero. This operationalization

minimizes the removal of correctly measured zero values,

which occurred with all of the other spectral shape parame-

ters, whether corrected or uncorrected. In aggregate, these

filtering criteria led to the removal of 37% of the original

set of observations. Both Energy and SHR were highly

skewed in their distributions. Energy was log-scaled to

address the skew, but log-transforming SHR did not attenu-

ate the non-normalcy of the distribution and so was not
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logged. SHR is a ratio, where zero meaningfully indicates

no subharmonics, which likely indicates breathier voice

qualities. Because the abundance of 0 values is an issue for

the PCA, values of zero were adjusted to 0.0001. This is

ten times lower than the lowest reported SHR value from

VoiceSauce (0.001).

Next, moving s.d.s were calculated for each of the 12

measures using a centered 50 ms window, such that each

window includes approximately ten observations. The

moving s.d.s capture dynamic changes for each of the voice

quality measures, which is important, as they may better

reflect what listeners attend to in talker identification and

discrimination tasks (Lee et al., 2019). This analysis uses

moving s.d.s, as opposed to the coefficients of variation

used by Lee et al. (2019). The rationale for this difference

is that all variables were scaled before inclusion in the

PCAs described in Sec. III, and as a result, there should not

be any undue effect on the outcome as the transformation

from s.d. to coefficient of variation is a scaling transforma-

tion. The last round of exclusionary criteria uses these

moving s.d.s. If an observation was missing a moving s.d.

value, it was removed. Given the centered window, this

means that observations falling less than 25 ms from a voic-

ing boundary were not included. There were 24 total mea-

sures, with a measured value and a moving s.d. for each of

the acoustic measurements listed above. These 24 measures

were used in the analyses described in Sec. III. Across the

34 talkers, there were 2 917 152 observations after winnow-

ing the data from an initial count of 6 387 510 observations.

These observations were not evenly distributed across talk-

ers and languages. While this full set of observations is per-

fectly valid for the crosslinguistic comparison in Sec. III A

and is used there, sample size may have an impact on the

PCA-based analyses in Secs. III B and III C. To control for

the impact of sample size in that part of the analysis, the

number of samples for each talker was capped to include

only the first 20 151 samples for each interview. This value

was selected as it represents the interview with the fewest

observations. Simply, differences in sample size reflect the

variability in how much different individuals in the corpus

talked. Those who produced longer passages of speech ulti-

mately had more observations of voiced speech. Passage

length was expected to impact the analysis, given how

much affect and style can vary within a single conversa-

tion. Over time, individuals cover more of their range of

variation, and as such, a regression to the mean is expected

over time. That is, PCAs based on shorter stretches of

speech would be subject to greater variability, while those

based on longer stretches would converge on a structure.

Thus, the sample size was controlled to better equate across

talkers.

Following this last winnowing step, there were

1 370 268 total observations (34 talkers� 2 inter-

views� 20 151 observations per interview). While the win-

nowing process removed a substantial amount of the data,

the total number of samples per talker is still much larger

than the approximately 5000 used in Lee et al. (2019).

III. ANALYSIS AND RESULTS

A. Analysis 1: Crosslinguistic comparison of acoustic
measurements

1. Methods and results

We first present a crosslinguistic comparison for each

talker and measure. Figure 1 depicts the distribution of val-

ues for each of the acoustic measurements across languages,

with all talkers pooled together.

For each acoustic measurement and talker, Cohen’s d
was calculated using the lsr package (Navarro, 2015) in R

(R Core Team, 2020); this provides a high-level assessment

of whether variable means differed across the two lan-

guages. These comparisons have no bearing on how a given

variable varies. Table I reports counts of talkers by effect

size. Notably, across all talkers and variables, only 20.8%

yielded non-trivial Cohen’s d values, although all talkers

had at least one non-trivial comparison. The distribution of

these non-trivial counts by talker is depicted in Fig. 2.

Additionally, Figs. 3 and 4 depict the relationship between

the difference of means across languages and Cohen’s d for

all of the measures. While redundant, these figures facilitate

visual identification of the trends in the data.

For the non-trivial comparisons, there were consistent

patterns across languages for a handful of the variables,

including F0, H4*–H2kHz*, and, to a lesser extent,

H1*–H2*. If there was a non-trivial difference in F0 across

FIG. 1. (Color online) Each panel depicts a density plot that pools measure-

ments from all talkers together to show the range of values for that measure.

The x axes each have their own scale. Language is separated out by color.
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languages, then Cantonese had a lower mean F0 than

English (12 of 34; female¼ 7), although most talkers did

not exhibit a difference (22 of 34). This is consistent with

prior findings that when a difference between English and

Cantonese was found, Cantonese had a lower mean F0 for

females (Altenberg and Ferrand, 2006; Ng et al., 2012).

This difference occurs at roughly similar rates for female

and male talkers.

As for the two spectral shape measures with consistent

patterns, H4*–H2kHz* was consistently lower in Cantonese

when the comparison was not trivial (n¼ 9), although most

talkers did not exhibit a difference on this measure.

H1*–H2* was significantly higher in Cantonese for a rela-

tively large subset of the talkers (12 of 34), lower for a small

number (3 of 34), but trivial for most (19 of 34). While

based on different measures than Ng et al. (2012), the

H1*–H2* results are consistent with previous findings that

Cantonese tends to be breathier (or English creakier).

However, other interpretations are possible: Cantonese

could be breathier and English more modal. Cantonese can

be more modal and English creakier. Cantonese could also

be breathier and English creakier. One way to better under-

stand these values is to consider H1*–H2* alongside CPP

(Seyfarth and Garellek, 2018), but given that at the group

level, the means (M) and ranges for CPP (Cantonese: M
¼ 22.26, range ¼ 18.75, 25.08; English M ¼ 22.43, range

¼ 18.86, 25.42) and H1*–H2* (Cantonese: M ¼ 4.07, range

¼ –0.291, 10.28; English M ¼ 3.73, range ¼ –0.56, 10.2)

are so similar, the relationship between these measures at

this coarse level of analysis does not offer a fruitful path to

interpretation. The H4*–H2kHz* results are not consistent

with Ng et al. (2012), yet for both spectral shape measures,

it is important to reiterate that they are difficult to interpret

on their own.

For the remaining variables, while some talkers exhib-

ited a difference in mean values, the direction of the differ-

ence varied, or relatively few talkers exhibited the

difference. For example, a variable like F4 would be

TABLE I. This table reports counts of Cohen’s d for crosslinguistic com-

parisons of each of the acoustic measurements by talker. For most talkers

and variables, the difference in means was trivial, which is reflected in that

column’s high counts.

Cohen’s d

Trivial Small Medium Large

Variable 0.0–0.2 0.2–0.5 0.5–0.8 >0.8

F0 22 9 3 —

F0 s.d. 34 — — —

F1 22 10 2 —

F1 s.d. 30 4 — —

F2 26 8 — —

F2 s.d. 32 2 — —

F3 25 8 1 —

F3 s.d. 27 7 — —

F4 30 4 — —

F4 s.d. 27 7 — —

H1*–H2* 19 14 1 —

H1*–H2* s.d. 32 2 — —

H2*–H4* 24 10 — —

H2*–H4* s.d. 31 3 — —

H4*–H2K* 25 8 1 —

H4*–H2K* s.d. 32 2 — —

H2K*–H5K 23 10 1 —

H2K*–H5K s.d. 31 3 — —

CPP 22 10 2 —

CPP s.d. 32 2 — —

Energy 15 13 5 1

Energy s.d. 24 10 — —

SHR 31 3 — —

SHR s.d. 30 4 — —

FIG. 2. A histogram summary of the number of non-trivial comparisons

from Table I across the 34 talkers.

FIG. 3. (Color online) Each panel plots Cohen’s d on the x axis (scales dif-

fer) and the difference between language means on the y axis. Positive val-

ues indicate a higher mean in Cantonese than English. The color reflects the

levels of interpretation for Cohen’s d. Each point represents a talker.
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unlikely to vary across languages within the same talker

given its association with vocal tract size and has relatively

low counts of non-trivial differences across language.2

F2 exhibits variable behavior, showing the largest visi-

ble differences in Fig. 1. This visible group-level difference

masks the fact that underlyingly, only some individuals

show F2 differences by language. As shown in the Cohen’s

d results in Table I, eight individuals have non-trivial cross-

language comparisons: Two were positive, and six were

negative. Talkers tend to have either a wide spread of F2

values or a strongly skewed distribution with a long right

tail in both languages—this suggests that vowel fronting

varies by individual.

Other measures, such as Energy, have numerous non-

trivial comparisons but show a relatively even split for

direction (positive¼ 9, negative¼ 10). The large spread for

Energy may reflect things like speaking confidence in the

two languages, which likely varies by individual (J€arvinen

et al., 2013).

CPP also exhibits a split between positive (five talkers)

and negative (seven talkers). Higher CPP values are associ-

ated with both breathy or creaky non-modal phonation

types. In this sense, a positive difference would indicate that

Cantonese was more non-modal, while a negative difference

would indicate that English was more non-modal.

Interpreting CPP is not straightforward, however, as it is not

immediately clear which type of non-modal phonation the

measure entails. Given the H1*–H2* results, it suggests that

knowing where on the creaky-modal-breathy spectrum a

given speaker falls is pertinent to interpreting this measure.

CPP would likely corroborate that outcome on a by-

observation basis [for example, see Seyfarth and Garellek

(2018)]. In any case, listener assessments would ultimately

help pinpoint how spectral shape and noise parameters map

onto perceived voice quality.

2. Interim discussion

Overall, while talkers show some clear across-language

differences with crosstalker tendencies for lower mean F0 in

Cantonese than English and phonation quality differences

between the languages, these are far outnumbered by instan-

ces with no consistent differences or trivial differences.

Together, this offers the initial conclusion that the acoustic

variation in voice quality in Cantonese-English bilinguals is

both subtle and individual in nature, potentially cueing

social identity differences across languages, and not

language-specific articulatory patterns. Alternatively, it may

also indicate that there is not a veridical voice quality differ-

ence between Cantonese and English.

B. Analysis 2: PCA

PCA is a dimensionality reduction technique appropri-

ate for data with many potentially correlated variables. In

the case of voices, distilling numerous acoustic dimensions

into a smaller number of components facilitates identifying

and describing the structure of voice variability. PCA pro-

vides insight into how variables pattern together in a data

set. This feature of PCA is especially relevant, as voice per-

ception research has made it clear that individual acoustic

measurements may be necessary to capture and encode a

voice but may not be perceptually meaningful to listeners.

What matters is how the different pieces cohere together

and ultimately form a percept. While PCA does not shed

light on perception, the signal-based account can be used to

generate predictions about listener perception of voices.

Often, the goal of PCA is to take a large number of

dimensions and extract a much smaller set to use for some

additional purpose (e.g., linear regression). The focus here is

on the internal structure of the components. That is, we

delve into what makes up components for different talkers

and whether an individual’s voice structure varies (or not)

across languages.

1. Methods

We adapt methods from work on voices (Lee et al.,
2019; Lee and Kreiman, 2020) and faces (Burton et al.,
2016; Turk and Pentland, 1991). There are 68 PCAs—one

for each talker and language combination—and the results of

each talker’s English and Cantonese PCAs are compared. All

24 measures were standardized on a by-PCA basis before the

analysis. PCAs were implemented with the parameters pack-

age (L€udecke et al., 2020) in R (R Core Team, 2020), using

an oblique promax rotation to simplify the factor structure, as

the measurements reported in Sec. III A were expected to be

FIG. 4. (Color online) This figure uses the format of Fig. 3 but reports on

the s.d. measures.
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somewhat correlated given prior findings (Lee et al., 2019)

and a broader understanding of how different acoustic mea-

sures align with one another (Kreiman et al., 2014; Kreiman

et al., 2021).

There are many different methods for setting the num-

ber of PCA components, and in this analysis, each PCA

included the number of components for which all resulting

eigenvalues were greater than 0.7 times the mean eigen-

value, following Jolliffe’s (2002) recommended adjustment

to the Kaiser–Guttman rule. This rule was used in place of a

more sophisticated test (e.g., broken sticks), as it is not detri-

mental to this exploratory analysis to err on the side of

including marginal components (i.e., those that account for

relatively minimal amounts of the overall variance).

Additionally, across each of the components, only load-

ings with an absolute value of 0.45 or higher were inter-

preted. While Lee et al. (2019) use a threshold of 0.32,

Tabachnick and Fidell (2013) note that higher loadings indi-

cate that a particular variable is a better measure of the com-

ponent, with 0.32 corresponding to poor (but still

interpretable) overlap between the variable and the compo-

nent. The guidelines in Tabachnick and Fidell (2013) indi-

cate that loadings of 0.45 correspond to fair, 0.55 to good,

0.63 to very good, and 0.71 and above to excellent. Given

the large number of components and loadings in this analy-

sis, only loadings greater than the fair threshold are inter-

preted. This methodological decision facilitates interpreting

meaningful loadings on components.

2. Results and discussion

The results and their discussion are presented jointly to

facilitate understanding of the output of the PCAs.

The PCAs across both languages for all 34 talkers

resulted in 10–14 components and accounted for

73.85%–81.95% of the total variation. Half of the talkers

had the same number of components for each language (17

of 34), 16 talkers had a difference of one in the number

components, and only one talker had a difference of two.

Talkers had 3–10 identical component configurations across

their languages (M ¼ 7.6)—that is, the same variables

loaded on the components above the fair threshold (although

loading values varied). These shared components represent

26.1%–83.3% of the total components for talkers (M
¼ 64.3%). The numbers comprising these summary statistics

are provided in Table II. While this already indicates a sub-

stantial amount of shared lower-dimensional structure across

languages, it likely underestimates the actual shared struc-

ture. The reason is that similarity of component structure is

not taken into account—for example, a component with

loadings above the fair threshold for F2, F3, and F4 and a

component with just F2 and F3 are identified as different

components in the crosslanguage comparison. This similar-

ity will be taken into account in the next part of the analysis

in Sec. III C.

To assess whether talkers exhibit the same structure in

voice variability across their languages, patterns present

across the different PCAs are considered. This provides con-

text for understanding what unique structural characteristics

in talkers’ voices look like. To this end, this section briefly

summarizes common patterns across PCA components,

regardless of how much variance they account for, as the

difference is often quite small. Figure 5 shows all of the

components of participant VF32A’s Cantonese and English

PCAs, illustrating some examples of how components can

vary (or not) across languages. Figure 5 can be interpreted

as follows. The left column visualizes the VF32A’s

Cantonese PCA, and the right column English. Each panel

depicts a single component, and the components are num-

bered along the right in order by the amount of variance

accounted for in the PCA.

VF32A provides a clear illustration of how components

compare across languages in different ways. The most

straightforward comparison is one where the same variables

make up a component in the same position—as is the

case for the first component of each language in the figure.

TABLE II. The number of components, variance accounted for, and num-

ber of identical components across languages for each PCA.

Cantonese English

Talker n Variance n Variance Identical n

VF19A 12 0.79 12 0.78 7

VF19B 12 0.79 12 0.79 8

VF19C 12 0.79 11 0.75 7

VF19D 12 0.77 12 0.77 10

VF20A 11 0.77 11 0.78 5

VF20B 13 0.81 12 0.80 8

VF21A 11 0.76 12 0.78 6

VF21B 12 0.78 12 0.78 6

VF21C 14 0.82 13 0.81 10

VF21D 12 0.79 12 0.79 10

VF22A 11 0.78 11 0.78 8

VF23B 12 0.79 12 0.79 9

VF23C 12 0.79 12 0.79 9

VF26A 11 0.74 12 0.76 6

VF27A 11 0.77 10 0.74 7

VF32A 12 0.78 12 0.77 8

VF33B 12 0.78 13 0.81 10

VM19A 11 0.76 12 0.79 9

VM19B 11 0.79 12 0.79 3

VM19C 11 0.77 11 0.76 7

VM19D 12 0.77 14 0.81 8

VM20B 12 0.80 11 0.76 7

VM21A 11 0.80 11 0.79 7

VM21B 11 0.78 11 0.78 8

VM21C 12 0.78 13 0.80 9

VM21D 12 0.78 11 0.75 6

VM21E 11 0.78 12 0.81 7

VM22A 12 0.77 12 0.79 9

VM22B 12 0.79 12 0.79 8

VM23A 12 0.80 12 0.78 7

VM24A 12 0.79 11 0.76 6

VM25A 12 0.78 12 0.78 9

VM25B 11 0.76 12 0.78 5

VM34A 11 0.78 12 0.80 9
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While the loadings and the variance accounted for differ,

VF32A’s first component is formed of F2, H2kHz*–H5kHz,

and H4*–H2kHz* in both languages. This type of similarity

would have been identified under a stricter replication of

prior methods (Lee et al., 2019). Another kind of straightfor-

ward comparison is where the same component structure

occurs in both languages but in a different ordinal position.

Consider, for example, VF32A’s component 4 in Cantonese

and component 5 in English. Both components comprise

SHR s.d. and SHR exclusively and account for 6.9% and

7.1% of the overall variance in the respective PCAs. These

components are extremely similar to one another in every

way but the ordering of components.

The remaining types of comparisons are somewhat less

straightforward but still relevant. For example, VF32A’s

Cantonese component 6 (F3 s.d. and F4 s.d.) consists of a

subset of the variables in her English component 2 (F2 s.d.,

F4 s.d., and F3 s.d.). Last, sometimes variables just pattern

differently—in Cantonese, F0 patterns with H4*–H2kHz*,

H1*–H2*, and H2*–H4* in component 2, while in English,

F0 patterns in component 9 with Energy. While an in-depth

analysis of each component of each PCA is beyond the

scope and goals of this paper, examining VF32A’s compo-

nents in this way highlights the importance of not attributing

too much value to the ordering of components. Instead, it is

more appropriate to attend to component composition and

the variance accounted for by different components.

Broadly, there were many similarities in component

composition across talkers and languages. We summarize

the components that were present in every talker’s PCA and

describe the composition of others that occurred frequently

or in notable combinations. There were 140 unique compo-

nents across all voices and languages, relatively evenly split

across Cantonese (n¼ 73) and English (n¼ 67).

The most commonly shared component accounting for

the most variation across talkers had a structure of

H2kHz*–H5kHz s.d. and H4*–H2kHz* s.d. All 34 talkers

had these measures patterning together in both Cantonese

FIG. 5. (Color online) Components of

the Cantonese and English PCAs for

VF32A—a single talker from the cor-

pus taken as an example. Loadings are

represented by bar height and are

labeled with the variable name; color

represents conceptual groupings. The

component’s variance accounted for is

superimposed.
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and English, although it did not account for a particularly

large proportion of variance. All talkers also had CPP s.d. as

a single component in English, and most did in Cantonese

as well (n¼ 32). SHR and SHR s.d. went together for the

vast majority of talkers (Cantonese¼ 31, English¼ 31).

Similarly, like the most common component involving

H2kHz*–H5kHz s.d. and H4*–H2kHz* s.d., these were

composed of CPP s.d., SHR, and SHR s.d. and accounted

for relatively small amounts of variance. However, it is of

note that these most common component structures are

formed by variables associated with phonation type and

source qualities.

Another very frequent component included phonation

variables and filter qualities: F2, H2K*–H5K, and H4*–2K*

loaded on a component for most talkers in both languages

(Cantonese¼ 32, English¼ 28). This component account

accounted for a relatively high proportion of variance.

While a concise summarization of what this component

means is challenging, it includes both higher spectral shape

parameters and up to three formants (F2, F3, H2K*–H5K,

and H4*–2K* for English¼ 1; F2, F3, F4, H2K*–H5K, and

H4*–2K* for English¼ 5 and Cantonese¼ 2). These varia-

bles are typically associated with phonation type from mid-

frequency measures and vowel quality (or other aspects of

the filter), respectively. This component, thus, reflects how

some variables that are often studied in isolation, in fact,

covary [for a cautionary tale of interpreting F3 and voice

quality in the context of sound change, see S�oskuthy and

Stuart-Smith (2020)]. The higher formants F3 and F4 also

patterned together for most talkers (Cantonese¼ 27,

English¼ 26).

H2*–H4* s.d. most commonly occurred alone

(Cantonese¼ 17, English¼ 17) or in combination with

H1*–H2* s.d. (Cantonese¼ 10, English¼ 17). H2*–H4* s.d.

also occurred along with H1*–H2* s.d. and CPP (Cantonese

¼ 2), F1 s.d. (Cantonese¼ 1), or F1 (Cantonese¼ 1). H2*–H4*

was also in a component with F1 (Cantonese¼ 13,

English¼ 3). These components, F1 withstanding, reflect vari-

ability in non-modal phonation quality and the timbre of the

voice—often described as brightness in Lee et al. (2019).

Formant s.d. parameters often co-occurred. In both lan-

guages, this component typically consisted of F2 s.d., F3

s.d., and F4 s.d. (Cantonese¼ 17, English¼ 19), although

many cases excluded F2 s.d. and only contained F3 s.d. and

F4 s.d. (Cantonese¼ 10, English¼ 13). That formant vari-

ability dimensions pattern together likely reflects how for-

mants move in concert across coarticulatory processes.

Constantly moving articulators simultaneously impact all of

the formants, leading to the covariation observed here.

While the formant and spectral shape moving s.d.s often

exhibited these common patterns, variables in these categories

were just as likely to pattern in more idiosyncratic ways, load-

ing alongside each other, F0, formants, and spectral measures.

This kind of variability is not readily summarizable.

CPP co-occurs with source components, notably with

F0, F0 s.d., Energy, Energy s.d., SHR, and most of the

harmonic-based measures of phonation quality. CPP s.d.,

however, only occurs with itself, and does so for nearly all of

the talkers in Cantonese and all in English (Cantonese¼ 32,

English¼ 34). CPP s.d. co-occurs with other components in

only two other instances for two talkers. These patterns reflect

the relative independence of CPP and how it varies, which

measures regularity in the harmonic structure (i.e., degree of

modal phonation). That CPP often loads with F0 and other

source components makes sense, as an increase in local F0

variation could simply be another way to say there is less regu-

larity in the pitch periods. These components, thus, likely

reflect non-modal phonation.

SHR and SHR s.d. exclusively loaded together for 31 talk-

ers in each language, SHR by itself for a single talker per lan-

guage and SHR s.d., for a single talker in Cantonese. The pair

was sometimes accompanied by H1*–H2* (Cantonese¼ 2,

English¼ 1) or F0 (English¼ 1). SHR s.d. was present in

components with H1*–H2* s.d. and CPP (Cantonese¼ 1) and

F0, H1*–H2*, and H2*–H4* (English¼ 1). SHR is associated

with period-doubling and irregularities in phonation. SHR and

SHR s.d. co-occurring so often (and so rarely with other varia-

bles) suggests that SHR and its variability together form a

meaningful dimension in voice quality.

While this covers many of the variables that went into

the PCAs, F0 and F0 s.d. are notably sparse in the above

paragraphs. F0 s.d. was fairly consistent in emerging with

Energy s.d. (Cantonese¼ 17, English¼ 18) and in a small

number of other component configurations that included

CPP, H1*–H2* s.d., and F1 s.d. F0 did not occur frequently

on its own (Cantonese¼ 4, English¼ 4) and was more often

accompanied with Energy (Cantonese¼ 13, English 7).

Beyond the combination of F0 and Energy, F0 appeared in

21 different component configurations, but none of these

occurred more than five times. Across these different com-

ponents, F0 was accompanied by all kinds of variables: F0

s.d., H1*–H2*, H1*–H2* s.d., H2*–H4*, F1, CPP, Energy,

Energy s.d., SHR, and SHR s.d. Some of these combinations

only occurred once. The lack of consistency in F0 across

talkers is notable for a few reasons. First, in Lee and col-

leagues’ work, F0 emerged as an important feature of acous-

tic voice variation structure in English spontaneous speech

(Lee and Kreiman, 2022) and Korean sentence reading (Lee

and Kreiman, 2020). In both studies, it consistently covaried

with spectral shape and noise variables on the first and sec-

ond components. This consistent pattern was not present in

English sentence reading (Lee et al., 2019). Second, F0

plays a major role in prior work on voice production and

perception, given its salience as an acoustic dimension

(Perrachione et al., 2019). While neither F0 nor F0 s.d. fea-

tured dominantly in their own component, 26% of all com-

ponents included F0 or F0 s.d., and it may be these varied

combinations of F0 with other variables (e.g., F0 and

H2*–H4* for four English voices, F0 and H1*–H2* for five

English voices, F0 s.d. and CPP for four Cantonese voices)

that provide listeners with a unique talker signature to latch

on to in voice perception.

While several variables are often loaded on the same

component, the same variable rarely had a complex loading
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pattern—that is, it was rare for a variable to load on multi-

ple components at the same time. Variables that participated

in complex loading structures only occurred in one or two

PCAs across all talkers and languages. This means that for a

given PCA, the interpretation of components is reasonably

straightforward, even if drawing generalizations over the

full group is not.

There were additional components (not reported here)

that were shared by less than half of the talkers. A full list of

component configurations, along with the number of occur-

rences and range of variation accounted for, is provided on

OSF.

In summary, this PCA analysis found a greater amount

of component structure overlap than was reported in similar

voice analyses (Lee et al., 2019; Lee and Kreiman, 2022).

At the same time, idiosyncratic variation was still readily

apparent in the PCAs, both in how variables co-occur and

how much variance is accounted for by the different compo-

nents. Additionally, it is important to remember that these

PCAs represent the lower-dimensional structure of the voi-

ces they measure. Considering that the total variance unac-
counted for by the PCAs ranges from 18.1% to 26.2%, the

unaccounted for variability may also be idiosyncratic in

nature.

C. Analysis 3: Canonical redundancy analysis

While interpretation of the PCAs allows for the charac-

terization of acoustic voice structure, it does not provide a

quantitative comparison of voices. The goal of the next anal-

ysis is to provide a numerical comparison of PCAs in a

pairwise fashion to assess the extent of similarity in lower-

dimensional structure within and across languages and talk-

ers. The analysis accomplishes this by comparing PCAs

using a technique called a canonical correlation analysis
(CCA), which provides a metric of redundancy (i.e., over-

lap) between the two PCAs compared, resulting in a metric

that is easy to interpret.

1. Methods

To assess whether variation in a talker’s voice is struc-

turally similar across both languages, PCA output from both

languages is compared by calculating redundancy indices in

a CCA (Jolliffe, 2002; Stewart and Love, 1968). CCA is a

statistical method used to explore how groups of variables

relate to one another. The two sets of variables are trans-

formed such that the correlation between the rotated ver-

sions is maximized. This is useful here, as a talker may have

similar components in their English PCA and Cantonese

PCA, but these components might not necessarily be in the

same order, even if they account for comparable amounts of

variance.

Redundancy is a relatively simple way to characterize

the relationship between the loading matrices of two

PCAs—the two sets of variables under consideration here.

For example, the two redundancy indices represent the

amount of variation in a talker’s Cantonese PCA output that

can be accounted for via canonical variates by their English

PCA output and vice versa. Notably, the two redundancy

indices are not symmetrical (Stewart and Love, 1968). This

is particularly relevant in cases where the PCAs comprise

different numbers of components, as determined by the stop-

ping rule described above. The PCA with more components

will likely account for more of the variation in a PCA with

fewer components than the reverse.

Redundancy indices were computed for all pairwise

combinations, including cases where similar values were

expected (same talker, different language) and cases where

dissimilarity was anticipated (different talker and language).

Considering that the PCA analyses capture the lower-

dimensional structure within each language, these redun-

dancy indices effectively reflect the degree to which the

lower-dimensional structure of acoustic voice variability is

shared across a talker’s two languages.

2. Results

Redundancy indices for within-talker comparisons

ranged from 0.79 to 0.97 [median (Mdn)¼ 0.91, M¼ 0.91,

s.d.¼ 0.04] and are displayed in Fig. 6, with the two redun-

dancy indices for a given pairwise comparison plotted

against one another. Comparisons across talkers within-

language ranged from 0.64 to 0.95 (Mdn¼ 0.81, M¼ 0.81,

s.d.¼ 0.5). Comparisons across both talkers and languages

ranged from 0.65 to 0.95 (Mdn¼ 0.81, M¼ 0.81,

s.d.¼ 0.5).

Within-talker values were confirmed to be higher than

across-talker comparisons, per a Welch’s t-test [t(70.352)

¼ –18.68, p< 0.001, d¼ 1.8]—this result indicates that

regardless of language, talkers are more similar to them-

selves than talkers are to each other.

FIG. 6. (Color online) This plot depicts the relationship between the two

redundancy indices for three different types of comparisons. Across-talker

comparisons represented by orange “þ” (different language) and pink “�”

(same language) overlap in their entirety. Within-talker comparisons are

represented by the black circles and are clearly clustered at the top right.

3232 J. Acoust. Soc. Am. 153 (6), June 2023 Khia A. Johnson and Molly Babel

https://doi.org/10.1121/10.0019659

https://doi.org/10.1121/10.0019659


A second Welch’s t-test testing the same versus differ-

ent language for the across-talker comparisons did not find a

difference between those groups [t(4484)¼ –0.98, p¼ 0.33,

d¼ 0.03]. This result demonstrates that language is not a

delineating factor, or at the very least, the role of language

is eclipsed by the role of talker. This interpretation makes

sense, given the high degree of within-talker similarity dem-

onstrated in the first Welch’s t-test.

While the across-talker comparisons were generally

lower than the within-talker ones, the redundancy indices

are overall still relatively high. The high values are not

unexpected. As PCA is a dimensionality reduction tech-

nique, the discarded components almost certainly contain

idiosyncratic variation. Moreover, and following from Sec.

III B, there were a substantial number of commonly occur-

ring patterns across talkers and languages. Together, this

supports the conceptualization of a voice space comprising a

shared structure—as in the case of the prototype account

(Kreiman and Sidtis, 2011; Lavner et al., 2001; Lee et al.,
2019; Lee and Kreiman, 2022)—where voices can only

deviate from one another so much.

D. Analysis 4: Passage length analysis

There are two goals in the passage length analysis. The

first is to determine how much of a voice sample is neces-

sary to identify a stable description of voice variability for a

talker. The second is a post hoc confirmation that the choice

of samples in Sec. III B is sufficient.

To examine the role of passage length, multiple PCAs

for each talker and language combination were conducted,

such that each PCA captured a progressively longer portion

of the overall interview, using passage lengths comprising

sample sizes of 500, 2000, 4500, 8000, 12 500, 18 000,

24 500, 32 000, 40 500, 50 000, and 60 500 observations.

Each PCA based on a subset of the interview was then com-

pared to the PCA based on the largest sample size possible

for the same interview. As the total number of samples per

interview ranged from 20 151 to 68 312, there were 6–11

total PCAs (and, thus, comparisons) per interview, depend-

ing on its maximum possible passage length. While these

sample step sizes were somewhat arbitrarily selected, the

goal was to give a more granular perspective on the lower

end while still covering the upper tail. Redundancy between

the PCA based on a subset and the PCA based on the maxi-

mal sample size was expected to level off somewhere in the

middle, as talkers should eventually cover their range of var-

iability in a given style. In this case, increasing sample size

would have diminishing returns as far as the analysis is

concerned.

In these PCAs, the number of components was fixed at

ten, the lowest number found in Sec. III B. This was done to

put the PCAs on a more equal footing in the subsequent

analysis, given the asymmetries in CCA when different

numbers of components were present. For each interview,

the canonical redundancy indices were calculated for each

talker and language combination, comparing PCAs for each

passage length to the PCA for the longest passage length.

All of this was done on a within-language and within-talker

basis. The final comparison, thus, has perfect redundancy, as

the longest PCA for a given interview is compared to itself.

Figure 7 plots lines reflecting the redundancy indices

for each interview, with superimposed mean GAM smooths.

The x axis represents the sample size of the shorter passage

length in the comparison. The y axis represents an average

of the two redundancy indices. The vertical line at 5000 rep-

resents the average sample size from Lee et al. (2019). The

vertical line at 20 151 represents the sample size used in

Sec. III B. While there are some gains in sample sizes above

the second vertical line, they are comparatively small. The

leveling-off point falls somewhere between 10 000 and

15 000 samples.

It is apparent from this visualization that the sample

size used for PCAs in Sec. III B was sufficient to capture

most of the range of talkers’ within-interview variability.

Additionally, given how sample size seems to impact redun-

dancy, this analysis confirms that fixing the sample size in

Sec. III B was an appropriate decision. As the leveling-off

point likely varies across speech styles, it is not immediately

apparent whether the sample size in Lee et al. (2019) and

Lee and Kreiman (2022) sufficiently captured the range and

structure of talker variability. As a reviewer points out, how-

ever, the elbow in Fig. 7 starts around the 5000 sample

mark. This may denote 5000 samples as a minimum thresh-

old. As redundancy approaches 1, it is unclear where mean-

ingful differences in characterizing the voice space exist in

these values.

IV. GENERAL DISCUSSION

How does a bilingual’s voice vary across their two lan-

guages? To answer this question, we explored spectral prop-

erties and structural similarities in Cantonese-English

bilinguals’ spontaneous speech. The analyses cover three

different exploratory approaches to the question of under-

standing crosslinguistic (dis)similarity in bilingual voices.

FIG. 7. (Color online) Passage length redundancy indices are plotted

against the sample size of the smaller PCA. Smoothed curves show a rapid

increase in redundancy followed by a leveling off between the vertical

orange lines, which represent the sample sizes used in prior work

(x¼ 5000) and the present study (x¼ 20 151).
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The first analysis is a coarse approach, comparing over-

all distributions using Cohen’s d values. This approach fol-

lows from a body of literature focused on crosslinguistic

comparisons of acoustic measurements—primarily F0—

using means, ranges, and s.d.s to describe how voices differ

(or not). This analysis method suggests that some voices

vary across languages and that there are acoustic dimensions

that are more likely to differ across Cantonese and English

within a talker. F0, in particular, was relatively consistent;

all non-trivial Cohen’s d values were in the direction of

Cantonese having lower F0 than English. Several acoustic

measurements intended to capture phonation quality were

different across languages but in inconsistent directions

across Cantonese and English. These diverging patterns sug-

gest that the locus of the acoustic variation is likely not due

to the languages themselves but may be related to the social

identities individuals adopt in their two languages, struc-

tured by social factors not considered in our approach.

The second analysis builds upon Lee and colleagues’

foundational work (Lee et al., 2019; Lee and Kreiman, 2022)

on voice variation using PCAs, extending it to the case of

bilingual speech. We find more component structure overlap

than their work; however, there was ample talker-specific idio-

syncratic variation in the PCAs (between 18% and 26% of the

variance). We introduce canonical redundancy as a metric for

objectively assessing crosslinguistic similarity from the output

of two PCAs. These methods are then extended to determine

how much speech is needed to characterize an individual’s

voice and validate our methodological choices. In future

research, we will validate whether these canonical redundancy

measures correlate with listeners’ perceptual organization of

the voices within and across languages.

The results suggest that Cantonese-English bilinguals

exhibit similar spectral properties and similar lower-

dimensional structure in their acoustic voice variation in

their two languages. This similarity is most apparent on a

within-talker basis but still present across talkers and lan-

guages, despite substantial segmental and suprasegmental

differences between English and Cantonese (Matthews

et al., 2013). It may be the case that some language combi-

nations or bilingual individuals will exhibit more dissimilar-

ity than observed here. On the other hand, the strong theme

of within-talker voice similarity may not be surprising as

any bilingual individual is still constrained to using the

same vocal anatomy to articulate their oral languages.

Bilinguals appear to have the same “voice” in each of the

two languages, supporting the characterization of voices as

auditory faces. The face-voice comparison is especially apt

if you take into account findings that talkers’ facial postures

vary across languages (Afouras et al., 2020; Soto-Faraco

et al., 2007). Voices and faces are highly similar across lan-

guages but are not necessarily identical—this leaves room

for individuals who are familiar with both the individuals

and languages in question to excel at perceptual tasks in

both domains.

The language familiarity effect (LFE) in voice percep-

tion warrants our attention, as its existence suggests not all

listeners can equivalently exploit the available acoustic

information that signals talker identity. The LFE is a term

that characterizes the observation that listeners who know

the language being uttered have a performance advantage in

voice line-ups (Goggin et al., 1991; Hollien et al., 1982;

Johnson et al., 2011; Thompson, 1987) and voice identifica-

tion tasks (Bregman and Creel, 2014; Nygaard and Pisoni,

1998; Perrachione and Wong, 2007). The LFE appears to be

gradient, increasing in its strength with increased profi-

ciency in the target language (Bregman and Creel, 2014;

Orena et al., 2015; Xie and Myers, 2015). Phonological

knowledge about a language appears to be a key to the LFE

(Johnson et al., 2011; Perrachione et al., 2015; Perrachione

et al., 2019), although note that this phonological knowledge

need not be particularly sophisticated because 7–8 month

old infants have an advantage (Johnson et al., 2011), as do

anglophones in Montreal, Quebec when tested in French,

who regularly hear French, although they are not competent

in it (Orena et al., 2019). If bilingual voices share so much

low-dimensional voice structure, as we suggest, why cannot

listeners globally take advantage of this information? We

offer two possible explanations. One possibility is that the

linguistic information essentially distracts listeners from the

lower-dimensional structure. The second is simply that

learning a talker’s vocal identity is about learning how their

voice can vary. It may be that listeners need sufficient expo-

sure to a voice—more than what is feasibly granted in an

experimental setting—to delimit a voice’s range of varia-

tion. Indeed, being highly familiar does appear to confer a

voice particular privileges (e.g., being selectively ignored or

attended; Johnsrude et al., 2013). Note too that the LFE

appears stronger in tasks that require “telling voices togeth-

er” compared to those that require “telling voices apart,”

which are conceptualizations of, broadly, talker categoriza-

tion and discrimination tasks, respectively. It seems as

though language experience matters substantially less in dis-

crimination tasks, where listeners may be able to take

advantage of low-dimensional voice structure to cue talker

differences (Lavan et al., 2019a; Park et al., 2018;

Perrachione et al., 2019).

Returning to the results at hand, our findings from the

first two analyses reflect prior research. For example, when

there was a difference for measures like F0 or H1*–H2*, it

tended to mirror expectations from the literature that

Cantonese tends to have lower pitch and a different phona-

tion quality than English (Ng et al., 2012; Ng et al., 2010).

Previous work described Cantonese voice quality as breath-

ier, but it may be the case that Cantonese is better described

as more modal and English creakier. At the same time, most

talkers did not exhibit a meaningful difference, validating

prior work that found no differences (Altenberg and

Ferrand, 2006). The variability present in this particular

sample of 34 talkers highlights the need to treat very small

studies with some level of skepticism.

In the PCAs, similarity to prior work emerges in the

structure of various components, including the ones that

account for the most variability. Lee et al. (2019) report that
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three of the largest components captured lower-dimensional

structure for (i) higher harmonic spectral shape variation, (ii)

higher formants, and (iii) a combination of lower spectral

shape with the lower formants. While the amount of overall

variance accounted for differs here, potentially due to the

larger sample sizes used in our analysis, these component

structures also emerged for the Cantonese-English bilinguals.

Respectively, they are associated with (i) perceived breathiness

or brightness, (ii) vocal tract size or speaker identity, and (iii) a

combination of phonation type and vocal tract configuration—

perhaps reflecting shared linguistic variation. Much like Lee

et al. (2019), the key shared dimensions relate to the timbre,

identity, and vocal tract size.

The overlap in component structure between this and

prior work (Lee et al., 2019; Lee and Kreiman, 2020) sup-

ports the prototype model in voice (Kreiman and Sidtis,

2011; Latinus and Belin, 2011; Lavner et al., 2001). Within

this model, a prototype is typically thought of as a speech

community average, although, as suggested by Lee and col-

leagues, the prototype could be the shared voice structure

and not an average, although there is evidence that an aver-

age is used by listeners (Lavan et al., 2019b). That there are

similarities across disparate populations and languages (e.g.,

Lee and Kreiman, 2020) suggests that prototypes may

extend beyond tightly defined speech communities.

The PCA analysis adds additional commonly occurring

components to the mix, suggesting that there is yet more

lower-dimensional structure shared by voices. Examples of

this include separate components that put each of the spec-

tral noise dimensions at center stage—SHR, Energy, and

CPP (with or without F0 s.d.). That these components

emerge in the form that they do validates the use of these

measures for describing how voices vary—each is capturing

unique variability in the structure of the voice. Conversely,

the spectral shape variables tend to covary in more compli-

cated ways—this reflects a more general understanding of

what the four spectral shape parameters tell us about the

shape of a spectrum in aggregate and how they are more

challenging to interpret on their own (Garellek, 2019). The

additional set of shared components serves to flesh out the

structure of what a prototypical voice might look like.

This high degree of similarity does not preclude cross-

linguistic differences on a within-talker basis but rather sug-

gests that such differences occur on a more global level.

This is apparent in Fig. 8, which depicts the relationship

between within-talker, across-language redundancy (aver-

aged) from Sec. III C and the difference between the mean

values for each of the acoustic measurements in Sec. III A.

If there were clear relationships between large crosslinguis-

tic differences and redundancy, the regression lines should

be strongly negative—this does not seem to be the case.

Instead, this figure demonstrates that there is not much of a

relationship between Cohen’s d and redundancy. This sug-

gests that the mean differences are not exerting much influ-

ence on the redundancy analysis. Coarse summary statistics

and the structure of variability, thus, give very different—

and likely independent—views into how voices vary.

Such high similarity in the PCAs was not entirely

expected, given the results of Lee et al. (2019) and Lee and

Kreiman (2022), where a handful of shared components

were evident but were complemented by numerous idiosyn-

cratic components. Several analysis decisions may have

contributed to this apparent difference. Similar components

were compared independent of order, which ignores the fact

that similar components may account for different amounts

of variance but crucially ensures that comparisons are made

among like items. Any downside to this methodological

decision is mitigated by the fact that most components made

relatively small contributions in how much of the overall

variance they accounted for (see Table II).

While methodological choices may account for some

part of these results, the data subject to the analysis are also

relevant. Simply, more data are used in our analysis, and

larger speech samples allow for a more stable underlying

structure to emerge. Smaller samples, conversely, may

reflect more ephemeral variation in a talker’s voice and,

thus, not be representative of the talker’s full range. The

passage length analysis in Sec. III D shows that the number

of samples needed for full stabilization is substantially

larger than the 5000 samples used in prior work. This does

not necessarily discount Lee and colleagues’ work, however,

as our use of spontaneous interview speech, as opposed to

Lee and colleagues’ read speech (Lee et al., 2019) and tele-

phone speech (Lee and Kreiman, 2022), is likely more vari-

able. Lee and Kreiman (2022) examined spontaneous

FIG. 8. (Color online) The average redundancy value for each talker is plot-

ted against the absolute value of the difference of means across languages

for that talker. Color and shape indicate the size of Cohen’s d. The superim-

posed regression line summarizes the relationship between these values.
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speech collected from short phone calls that lasted mini-

mally 2 min. By this estimation, the sample size was likely

on the lower side, compared to the 20–25 min interviews in

the SpiCE corpus. However, it is not possible to make a

direct comparison without knowing the number of samples.

Moreover, the elbow in the curve is around 5000 samples,

which is an indication that such a value may be a minimum

threshold that is, indeed, sufficient to accurately acoustically

characterize a voice within a given speech style. The meth-

ods presented here offer a tool for researchers to assess

whether the quantity of speech is representative of an

individual.

The time sample needed to provide a stable acoustic

characterization of a voice may not be what a listener needs

to make a reliable judgment about a voice. Listeners can

make quick and accurate judgments about social identity

from a single syllable (e.g., Purnell et al., 1999).

Developing an understanding of how listeners categorize

and organize the rich social and linguistic signals in human

voices is clearly a work-in-progress. This work contributes

to this effort. Ultimately, an empirically and theoretically

grounded understanding of the acoustic structure of voices

has relevance for one’s dynamic identity construction and

how voices map onto listeners’ organization of a voice space

for use in talker recognition and discrimination. This latter

connection is our primary interest. Turning to listener and

behavioral data will help decipher what is meaningful varia-

tion within a voice from the low-level noise that cannot be

attributed to a particular vocal signature. Verification from

listener performance will help adjudicate which analytical

choices present an acoustic voice space that matches listener

organization. For example, it may be the case that a smaller

sample of a voice is sufficient for the less challenging task

of “telling apart.” Short samples may illustrate that two voi-

ces vary enough along some acoustic-auditory dimensions

that they likely belong to different individuals. Listeners

may need experience with substantially longer samples to

accurately do the more challenging “telling together” task.

While the specifics of the results differ, our conclusions

align with Lee et al. (2019) and Lee and Kreiman (2022),

who posit that the structure of voice spaces supports a proto-

type model of voice perception (Latinus and Belin, 2011;

Latinus et al., 2013; Lavner et al., 2001) in which novel

individual voices are perceived in the context of one or

more prototypes housed in listeners’ memory. Lavner et al.
(2001) define a prototype as a pattern comprising “an

ensemble of acoustic features, related to the language, the

accent, the phonemes and allophones, and to the voice pro-

duction system…[reflecting] the average of speakers’ fea-

tures or a very common voice” (p. 64). New voices are

perceived in the context of this prototype, such that “only

those features that significantly deviate from the prototype

are stored (memorized) for the long term, and identification

of familiar voices is based on searching and locating the

voice, using only those features deviating from the proto-

type” (Lavner et al., 2001, p. 64). Lee et al. (2019) argue

that familiarity with a voice arises from learning how that

voice varies across time and space, whether within an utter-

ance or across environments, physical states, and emotions.

This familiarity could easily be characterized in terms of

the extent and manner that a voice deviates from a proto-

type. Recently, Lee et al. (2019) and Lee and Kreiman

(2022) suggest that the common structure they (and we)

identify across voices suggests an alternative understanding

of the voice prototype. The prototype might not be an aver-

age voice, but rather a distillation of the voice space that is

shared across voices. That is, the shared acoustic structure

identified here and in Lee et al. (2019) and Lee and

Kreiman (2022) may serve as the prototype. Considering

the prototype in this way is a rather stark turn from

some previous work. Latinus et al. (2013), for example,

hypothesize that voices are organized around F0, formant

dispersion, and harmonics-to-noise ratio (HNR) on a

gender-specific basis. And, indeed, they find neurological

evidence supporting their claim. In bringing the psycho-

acoustic voice model (Kreiman et al., 2014) to the study of

voice organization, we bring a broader range of acoustic-

auditory measures that are known to characterize voices

and be important to listeners. Our results do, indeed, sug-

gest that measures of F0, higher formants (which strongly

correlate with measures of formant dispersion), and several

measures of phonation type (related to HNR) are important

dimensions for acoustically characterizing voices. Future

research is necessary to more directly connect our work to

listeners’ voice organization.

Bilinguals offer a crucial angle on voice and cognitive

organization of voices. As we show, an individual’s voice

shares considerable amounts of structure across languages.

These results suggest that while a language’s structure deter-

mines what spectral and temporal dimensions will be used

to cue linguistic meaning, an individual’s vocal physiology,

anatomy, and social persona will limit the range of varia-

tion. These results have implications for bilingual voice rec-

ognition for humans and machines, and they suggest that

voice prototypes might not be language-specific. We, of

course, only examine a single bilingual combination—

Cantonese and English. Future research may demonstrate

that properties of the languages under comparison—for

example, their typological similarity, phonological overlap,

and the accompanying sociocultural space—or the type of

bilinguals compared—for example, early versus late, from a

community with heavy code-switching or highly structured

diglossia—may determine the degree to which bilinguals

exhibit one or more voices.
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